
Asymptotic
Runtime
Analysis

CS 251 - Data Structures
and Algorithms

Note:
Slides complement the

discussion in class

2

Table of Contents
Let’s dare to define algorithm
efficiency

Computational Tractability

Big-𝑂
Asymptotic upper bounds

Big-Ω
Asymptotic lower bounds

Big-Θ
Asymptotic tight bounds

01

02

03

04

Computational Tractability
01

Let’s dare to define algorithm
efficiency

4

What Do We Know So Far?

We can run experimental analyses based
on observed data.

We can define runtime expressions that
count the number of steps run by an
algorithm in terms of the input size or
values.

Runtime expressions may have different
terms and coefficients.

5

Tractability
We want to find efficient solutions for computational problems.

A tractable problem is “a problem that can be solved using a reasonable
amount of resources (i.e., time and space).”

Idea

6

Algorithm Efficiency?

Proposed def. (1): “An algorithm is
efficient if, when implemented, it runs
quickly on real input instances.”

Issues:
• Where do we run such an algorithm?
• How well? Does it run quickly for

multiple input sizes?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 7

Algorithm Efficiency?

Proposed def. (2): “An algorithm is
efficient if it achieves qualitative better
worst-case performance, at an analytical
level, than brute-force search.”

Issues:
• Worst-case performance seems

draconian. How about average-case?
• Qualitative better performance?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 8

Polynomial Time

Suppose an algorithm has the following property:

There are constants 𝑎 > 0 and 𝑏 > 0 so that on every input instance of size 𝑛, its
running time is bounded by 𝑎𝑛𝑏 primitive computational steps.

Let’s consider an input size increase from 𝑛 to 2𝑛. So, the runtime increases:

𝑎 2𝑛 𝑏 = 𝑎2𝑏𝑛𝑏

Since 𝑏 is constant, so is 2𝑏 (slow-down factor).

Conclusion: Lower degree polynomials exhibit better scaling behavior than higher
degree polynomials.

Explanation from: Algorithm Design, by Kleinberg and Tardos. 9

Operation Example Nanoseconds

Integer add a + b 2.1

Integer multiply a * b 2.4

Integer divide a / b 5.4

Floating-point add a + b 4.6

Floating-point multiply a * b 4.2

Floating-point divide a / b 13.5

Sine Math.sin(theta) 91.3

Arctangent Math.atan2(y,x) 129.0

Running OS X on Macbook Pro 2.2Ghz with 2GB Ram

Operation Costs

10

Algorithm Efficiency?

Proposed def. (3): “An algorithm is
efficient if it has a polynomial running
time.”

Issues:
• Too prescriptive!
• We know “better” running times than

polynomial time.

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 11

𝑛 𝑛 log2(𝑛) 𝑛2 𝑛3 1.5𝑛 2𝑛 𝑛!

𝑛 = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

𝑛 = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18min 1025 years

𝑛 = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11min 36 years Very long

𝑛 = 100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 1017 years Very long

𝑛 = 1,000 < 1 sec < 1 sec 1 sec 18min Very long Very long Very long

𝑛 = 10,000 < 1 sec < 1 sec 2min 12 days Very long Very long Very long

𝑛 = 100,000 < 1 sec 2 sec 3 hours 32 years Very long Very long Very long

𝑛 = 1,000,000 1 sec 20 sec 12 days 31,710 years Very long Very long Very long

“The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million
high-level instructions per second. In cases where the running time exceeds 1025 years, we simply record the algorithm
as taking a very long time.”

Table from: Algorithm Design, by Kleinberg and Tardos. 12

13

Grow Rate Name Example Description

1 Constant Assignment Statement

log(𝑛) Logarithmic Binary Search Non-linear
increments

𝑛 Linear Linear Search Loop

𝑛 log(𝑛) Linearithmic Merge Sort Divide and
Conquer

𝑛2 Quadratic Check all pairs Some double loops

𝑛3 Cubic Check all triples Some triple loops

2𝑛 Exponential Check all subsets Exhaustive search
14

What can we say about
an algorithm as the

input size increases?

15

Asymptotic
“Approaching a value or a curve (i.e., a runtime expression) arbitrarily

closely”

Idea

16

Number of Operations?

Let’s focus on the for loops code for now:

3 variable declarations
8 integer additions
4 compares

Anything else? Are those numbers
accurate?

How many times do those operations
execute in terms of 𝑛?

algorithm ThreeSum(A:array)

let n be the length of A
count ← 0

for i from 0 to n-1 do
for j from i + 1 to n-1 do

for k from j + 1 to n-1 do
if A[i] + A[j] + A[k] = 0

count ← count + 1
end if

end for
end for

end for

return count
end algorithm

17

Example: OneSum code snippet

Running this code for some positive
integer value n will result in:

• Variable declarations: 2
• Assignment statements: 2
• < compares: 𝑛 + 1
• == compares: 𝑛
• Array accesses: 𝑛
• Variable increments: 𝑛 to 2𝑛

int count = 0;

for (int i = 0; i < n; i++)
{

if (A[i] == 0)
{

count++;
}

}

18

Example: TwoSum code snippet

Running this code for some positive integer
value n will result in:

• Variable declarations: 𝑛 + 2
• Assignment statements: 𝑛 + 2

• < compares: 𝑛 + 1 +
1

2
𝑛(𝑛 + 1)

• == compares: 1
2
𝑛(𝑛 − 1)

• Array accesses: 𝑛(𝑛 − 1)

• Variable increments: 𝑛 + 1

2
𝑛(𝑛 − 1) to 𝑛 +

𝑛(𝑛 − 1)

int count = 0;

for (int i = 0; i < n; i++)
{

for (int j = i + 1; j < n; j++)
{

if (A[i] + A[j] == 0)
{

count += 1;
}

}
}

19

So, We Have a T(n)…

● Runtime expressions may have more
than one term.

● There are more “dominant” terms
than others.

● Some terms appear “frequently”.

● Idea: Let’s consider how runtime
expressions grow as the input size
increases.

20

Big-𝑂
02

Asymptotic upper bounds

21

Big-𝑂 Notation

Useful to classify algorithms according to an upper bound.

Definition: 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 if ∃𝑐 > 0, ∃𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤

𝑐𝑔 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any faster than
𝑔 𝑛 .

22

Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇(𝑛) ∈ 𝑂(𝑛2).

Where do we even start? Check which term from 𝑇(𝑛) grows the fastest.

23

24

Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛2 .
Proof:

𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝𝑛2 + 𝑞𝑛2 + 𝑠𝑛2 = 𝑝 + 𝑞 + 𝑠 𝑛2

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of 𝑂 ∙ ,
which requires 𝑇 𝑛 ≤ 𝑐𝑛2.

So, 𝑇 𝑛 ∈ 𝑂 𝑛2 , where 𝑐 = 𝑝 + 𝑞 + 𝑠, 𝑛0 = 1, and 𝑔 𝑛 = 𝑛2.

25

About Notation

Saying:
𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

Is the same as the following expressions:

• 𝑓 𝑛 = 𝑂 𝑔 𝑛

• 𝑓 𝑛 is 𝑂 𝑔 𝑛

• 𝑓 𝑛 is of order 𝑔 𝑛

26

But Wait…

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛3 .
Proof:

𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝𝑛3 + 𝑞𝑛3 + 𝑠𝑛3 = 𝑝 + 𝑞 + 𝑠 𝑛3

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of 𝑂 ∙ ,
which requires 𝑇 𝑛 ≤ 𝑐𝑛3.

So, 𝑇 𝑛 ∈ 𝑂 𝑛3 , where 𝑐 = 𝑝 + 𝑞 + 𝑠, 𝑛0 = 1, and 𝑔 𝑛 = 𝑛3.

27

So, Which One Is It?

Both! It’s just that 𝑛2 is a tighter upper-bound for 𝑇 𝑛 .

Let 𝑝 = 𝑞 = 𝑠 = 1:

𝑇 𝑛 = 𝑛2 + 𝑛 + 1

So, 𝑇 𝑛 ≤ 3𝑛2 ≤ 3𝑛3.

28

29

From now on, when we ask for a
𝑂 𝑔 𝑛 expression, we mean the

tightest possible.

30

Example: Bubble Sort

Upper bound? Consider the content of an input
array that forces the algorithm run the most
operations.

Any idea?

Worst-case: The event of an input array sorted in
descending order.

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm

31

Example: Bubble Sort

Let 𝑐1 be the costs associated to the statements
outside of the while loop, and 𝑐2 be the costs
associated to the statements from and within the
while loop.

𝑇 𝑛 = 𝑐1 +

𝑗=0

𝑛−1

𝑖=0

𝑛−2

𝑐2 = 𝑐1 + 𝑐2𝑛 𝑛 − 1

= 𝑐1 + 𝑐2𝑛
2 − 𝑐2𝑛

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛2

Proof: Assume 𝑐1, 𝑐2 ∈ ℤ+, 𝑐1 ≤ 𝑐2.

𝑐1 + 𝑐2𝑛
2 − 𝑐2𝑛 ≤ 𝑐2𝑛

2

Which holds with 𝑐 = 𝑐2, 𝑛0 ≥ 1, and 𝑔 𝑛 = 𝑛2.

32

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm

Unfortunately, people have occasionally
been using the 𝑂-notation for lower
bounds, for example when they reject a
particular sorting method "because its
running time is 𝑂 𝑛2 .“

- Donald Knuth, 1976

https://dl.acm.org/doi/pdf/10.1145/1008328.1008329
33

https://dl.acm.org/doi/pdf/10.1145/1008328.1008329

Big-Ω
03

Asymptotic lower bounds

34

Big-Ω Notation

Useful to classify algorithms according to a lower bound.

Definition: 𝑓 𝑛 ∈ Ω 𝑔 𝑛 if ∃𝑐 > 0, ∃𝑛0 > 0 such that 0 ≤ 𝑐𝑔 𝑛 ≤

𝑓 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ Ω 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any slower
than 𝑔 𝑛 .

35

Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 𝑛2 .
Proof:

𝑝𝑛2 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ ,
which requires 𝑝𝑛2 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 𝑛2 , where 𝑐 = 𝑝.

36

But Wait…

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 𝑛 .
Proof:

𝑝𝑛 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ ,
which requires 𝑝𝑛 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 𝑛 , where 𝑐 = 𝑝.

37

Even Lower!

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 1 .
Proof:

1 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ ,
which requires 1 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 1 , where 𝑐 = 1.

38

So, Which One Is it?

All three! It’s just that 𝑛2 is a tighter lower-bound for 𝑇 𝑛 .

Let 𝑝 = 𝑞 = 𝑠 = 1:

𝑇 𝑛 = 𝑛2 + 𝑛 + 1

So, 1 ≤ 𝑛 ≤ 𝑛2 ≤ 𝑇 𝑛 .

39

40

Example: Bubble Sort

Lower bound? Consider the content of an input
array that makes the algorithm to run the least
operations.

Any idea?

Best-case: The event of an input array already
sorted.

41

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm

Example: Bubble Sort

Let 𝑐1 be the costs associated to the statements
outside of the while loop, and 𝑐2 be the costs
associated to the statements from and within the
while loop.

𝑇 𝑛 = 𝑐1 +

𝑖=0

𝑛−2

𝑐2 = 𝑐1 + 𝑐2𝑛 − 𝑐2

Claim: 𝑇 𝑛 ∈ Ω 𝑛
Proof: Assume 𝑐1, 𝑐2 ∈ ℤ+, 𝑐1 ≤ 𝑐2.

𝑐1𝑛 ≤ 𝑐1 + 𝑐2𝑛 − 𝑐2

The inequality holds with 𝑐 = 𝑐1, 𝑛0 ≥ 1, and
𝑔 𝑛 = 𝑛.

42

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm

Big-Θ
04

Asymptotic tight bounds

43

Big-Θ Notation

We use it to classify algorithms according to a tight bound.

Definition: 𝑓 𝑛 ∈ Θ 𝑔 𝑛 if ∃𝑐1 > 0, ∃𝑐2 > 0, ∃𝑛0 > 0 such that 0 ≤
𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any faster nor
slower than 𝑔 𝑛 .

44

Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Θ 𝑛2 .
Proof:

𝑝𝑛2 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝 + 𝑞 + 𝑠 𝑛2

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Θ ∙ ,
which requires 𝑝𝑛2 ≤ 𝑇 𝑛 ≤ 𝑝 + 𝑞 + 𝑠 𝑛2.

So, 𝑇 𝑛 ∈ Θ 𝑛2 , where 𝑐1 = 𝑝, 𝑐2 = 𝑝 + 𝑞 + 𝑠, and 𝑔 𝑛 = 𝑛2.

45

Limits

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
reveals information about the asymptotic relationship between 𝑓 and 𝑔:

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ 0,∞ ⇒ 𝑓 ∈ Θ 𝑔

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ ∞ ⇒ 𝑓 ∈ 𝑂 𝑔

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ 0 ⇒ 𝑓 ∈ Ω 𝑔

L'Hôpital’s rule comes in handy: If lim
𝑛→∞

𝑓 𝑛 = ∞ and log𝑛→∞ 𝑔 𝑛 = ∞, then log𝑛→∞
𝑓 𝑛

𝑔 𝑛
= log𝑛→∞

𝑓′ 𝑛

𝑔′ 𝑛
.

46http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf

http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf

Asymptotic Growth Properties

If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑓 𝑛 ∈ Ω 𝑔 𝑛 , then 𝑓 𝑛 ∈ Θ 𝑔 𝑛 .

Transitivity:
• If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 , then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 , then 𝑓 𝑛 ∈ Ω ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Θ 𝑔(𝑛) and 𝑔 𝑛 ∈ Θ ℎ 𝑛 , then 𝑓 𝑛 ∈ Θ ℎ 𝑛 .

Sum of functions:
• If 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 , then 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .
• Let 𝑘 be a fixed constant, and let 𝑓1, 𝑓2, … , 𝑓𝑘 be functions such that 𝑓𝑖 𝑛 ∈ 𝑂 ℎ 𝑛 for

all 1 ≤ 𝑖 ≤ 𝑘. Then 𝑓1 𝑛 + 𝑓2 𝑛 + ⋯+ 𝑓𝑘 𝑛 ∈ 𝑂 ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑔 𝑛 .

47

Test yo’ self

3𝑛2 log 𝑛2 + 4𝑛 ∈ Ω log 𝑛 3𝑛2 log 𝑛 + 4𝑛 ∈ 𝑂 𝑛2

6𝑛2 log 2𝑛 + 4𝑛3 ∈ 𝑂 𝑛2 log 𝑛 5𝑛2 + 5𝑛 + 7 ∈ Θ 𝑛2

4 log2 𝑛 + 𝑛 + 2𝑛 ∈ Θ 𝑛 15𝑛3 ∈ Ω 1

48

Big-𝑂 is not a synonym of worst case.

Big-Ω is not a synonym of best case.

Big-Θ is not a synonym of average case.

We use asymptotic notation to represent
the boundaries of the orders of growth
for the runtime expressions in terms of
the input size.

49

What does it mean to have a
best/worst case?

Lower bound: Ω log 𝑛 if the
random number is always greater
than 50.

Upper bound:𝑂 𝑛2 if the
random number is always less
than or equal than 50.

Best/Worst Case Example

50

i ← 2

while i < n * n do

num ← Random(100)

if num > 50 then
i ← i * 3

else
i ← i + 5

end if

end while

What does it mean to have a
best/worst case?

Lower bound: Ω 𝑛 when the
while loop doesn’t execute
because A[i] is never less than
A[j].

Upper bound:𝑂 𝑛2 when the
while loop always runs all the way
from 𝑖 + 1 to 𝑛– 1.

Best/Worst Case Example

51

Let A be an array storing n integers

for i from 0 to < n – 2 do

j ← i + 1

while j < n and A[i] < A[j] do
j ← j + 1

end while

if j < n then
temp ← A[i]
A[i] ← A[j]
A[j] ← temp

end if

end for

Slidesgo

Flaticon Freepik

Stories

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by

Stories

STAHP!
Do you have any questions?

52

https://slidesgo.com/
https://www.flaticon.com/
https://www.freepik.com/
https://stories.freepik.com/

	Slide 1: Asymptotic Runtime Analysis
	Slide 2: Note: Slides complement the discussion in class
	Slide 3: Table of Contents
	Slide 4: Computational Tractability
	Slide 5: What Do We Know So Far?
	Slide 6: Tractability
	Slide 7: Algorithm Efficiency?
	Slide 8: Algorithm Efficiency?
	Slide 9: Polynomial Time
	Slide 10: Operation Costs
	Slide 11: Algorithm Efficiency?
	Slide 12
	Slide 13
	Slide 14
	Slide 15: What can we say about an algorithm as the input size increases?
	Slide 16: Asymptotic
	Slide 17: Number of Operations?
	Slide 18: Example: OneSum code snippet
	Slide 19: Example: TwoSum code snippet
	Slide 20: So, We Have a T(n)…
	Slide 21: Big-cap O
	Slide 22: Big-cap O Notation
	Slide 23: Example
	Slide 24
	Slide 25: Example
	Slide 26: About Notation
	Slide 27: But Wait…
	Slide 28: So, Which One Is It?
	Slide 29
	Slide 30: From now on, when we ask for a cap O open paren g of n , , close paren expression, we mean the tightest possible.
	Slide 31: Example: Bubble Sort
	Slide 32: Example: Bubble Sort
	Slide 33: Unfortunately, people have occasionally been using the cap O-notation for lower bounds, for example when they reject a particular sorting method "because its running time is cap O open paren n squared , , close paren .“ - Donald Knuth, 1976
	Slide 34: Big-cap omega
	Slide 35: Big-cap omega Notation
	Slide 36: Example
	Slide 37: But Wait…
	Slide 38: Even Lower!
	Slide 39: So, Which One Is it?
	Slide 40
	Slide 41: Example: Bubble Sort
	Slide 42: Example: Bubble Sort
	Slide 43: Big-cap theta
	Slide 44: Big-cap theta Notation
	Slide 45: Example
	Slide 46: Limits
	Slide 47: Asymptotic Growth Properties
	Slide 48: Test yo’ self
	Slide 49
	Slide 50: Best/Worst Case Example
	Slide 51: Best/Worst Case Example
	Slide 52: STAHP!

