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What Do We Know So Far?

%, 3 4n ] {x Y] 19 Ix, fcla /};}"’" - We can run experimental analyses based
Viess *F Ve on observed data.

I‘I " casenl <h *n"1)5
Lon+d . . .
n2ngrfe,) \" 2" We can define runtime expressions that
Wg 13001 (1, g)<e count the number of steps run by an

algorithm in terms of the input size or
| | {‘XHS +{gn5;f{xh4yv& g p
. N values.
|%| bk | By | By
Runtime expressions may have different
4" cas2n] <hf 24 R terms and coefficients.
nngife,) " e T




Tractability

We want to find efficient solutions for computational problems.

A tractable problem is “a problem that can be solved using a reasonable
amount of resources (i.e., time and space).”




Algorithm Efficiency?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos.

Proposed def. (1): “An algorithm is
efficient if, when implemented, it runs
quickly on real input instances.”

Issues:
Where do we run such an algorithm?
How well? Does it run quickly for
multiple input sizes?




Algorithm Efficiency?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos.

Proposed def. (2): “An algorithm is
efficient if it achieves qualitative better
worst-case performance, at an analytical
level, than brute-force search.”

Issues:
Worst-case performance seems
draconian. How about average-case?
Qualitative better performance?




Polynomial Time

Suppose an algorithm has the following property:

There are constants a > 0 and b > 0 so that on every input instance of size n, its
running time is bounded by an? primitive computational steps.

Let's consider an input size increase from n to 2n. So, the runtime increases:
a(2n)? = a2bn?
Since b is constant, so is 2? (slow-down factor).

Conclusion: Lower degree polynomials exhibit better scaling behavior than higher
degree polynomials.

Explanation from: Algorithm Design, by Kleinberg and Tardos.



Operation Costs

Operation Example Nanoseconds

Integer add a+b 2.1
Integer multiply a*b 2.4
Integer divide alb 5.4
Floating-point add atb 4.6
Floating-point multiply a*b 4.2
Floating-point divide alb 13.5
Sine Math.sin(theta) 91.3

Arctangent Math.atan2(y,x) 129.0

Running 0S X on Macbook Pro 2.2Ghz with 2GB Ram




Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos.

Algorithm Efficiency?

Proposed def. (3): "An algorithm is
efficient if it has a polynomial running
time."

Issues:
Too prescriptive!
We know “better” running times than
polynomial time.




n =10 <1lsec | <1sec <1lsec | <1sec < 1sec < 1sec 4 sec
n = 30 < 1lsec | <1sec < 1lsec | <1sec < 1sec 18 min 102> years
n =50 < 1lsec | <1sec <lsec | <1sec 11 min 36 years Very long
n =100 < 1lsec | <1sec < lsec | 1sec 12,892 years | 1017 years | Verylong
n = 1,000 <1lsec | <1sec 1sec 18 min Very long Very long Very long
n = 10,000 <1lsec | <1sec 2 min 12 days Very long Very long Very long
n =100,000 | <1sec | 2sec 3 hours | 32years Very long Very long Very long
n = 1,000,000 | 1sec 20 sec 12 days | 31,710 years | Verylong Very long Very long

“The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million
high-level instructions per second. In cases where the running time exceeds 1025 years, we simply record the algorithm
as taking a very long time.”

Table from: Algorithm Design, by Kleinberg and Tardos.
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T(n)=n

17(n) =n’
7(n) = log(n)
7(n) =n log(n)
7(n) =v/(n)
7(n) =3

7(n) =2"

7(n) = n2 log(n)
T(n) =1
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1 Constant Assignment Statement

N . Non-linear

log(n) Logarithmic Binary Search increments

n Linear Linear Search Loop
. N Divide and
n log(n) Linearithmic Merge Sort Conquer

n? Quadratic Check all pairs Some double loops
n3 Cubic Check all triples Some triple loops
2™ Exponential Check all subsets | Exhaustive search




What can we say about
an algorithm as the
Input size increases?
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Asymptotic
“Approaching a value or a curve (i.e., a runtime expression) arbitrarily @

closely”




Number of Operations?

algorithm ThreeSum(A:array)

let n be the length of A Let's focus on the for loops code for now:
count « ©

for i from @ to n-1 do 3 variable declarations

for j from i + 1 to n-1 do 8 integer additions
for k from j + 1 to n-1 do 4-con1pares
if A[i] + A[j] + A[k] = @
count « count + 1
end if Anything else? Are those numbers
end for accurate?
end for
end for
How many times do those operations

return count execute in terms of n?
end algorithm




/©\@ Example: OneSum code snippet

int count = 0;

for (int i = 0; i < n; i++)

{
if (A[i] == 0)
{
count++;
}

}

Running this code for some positive
integer value n will result in:

Variable declarations: 2
Assignment statements: 2

< compares:n + 1

== compares: n

Array accesses: n

Variable increments: n to 2n




Example: TwoSum code snippet

int count = 0;

for (int i = @; i < n; i++)
{
for (int j =i + 1; j < n; j++)
{
if (A[i] + A[3j] == @)
{
count += 1;
}
}
}

Running this code for some positive integer
value n will result in:

« Variable declarations: n + 2
e Assignment statements: n + 2

« <compares:n+ 1+ %n(n + 1)

e == compares: %n(n - 1)

* Arrayaccesses:n(n—1)

« Variable increments: n + %n(n —Dton+
nn-—1)

19
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S0, We Have a T(n)...

Runtime expressions may have more
than one term.

There are more “"dominant” terms
than others.

Some terms appear “frequently”.

Idea: Let's consider how runtime
expressions grow as the input size
increases.




Big-0

Asymptotic upper bounds




Big-o Notation

Useful to classify algorithms according to an upper bound.

Definition: f(n) € 0(g(n)) if 3c > 0,3dny, > O suchthat0 < f(n) <
cg(n),vn = n,.

Plain English: If f(n) € 0(g(n)), then f(n) doesn't grow any faster than
gn).

22



Example

Consider T(n) = pn® + qn + s, wherep,q,s € R™.
Claim: T'(n) € 0(n?).

Where do we even start? Check which term from T'(n) grows the fastest.

23



AN AN IRIORRIO)
>

«

100

100

100

—200

—180

~120

—80

24



Example

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € 0(n?).
Proof:

T(n) = pn*+qn+s < pn® + qn® + sn* = (p + q + s)n*

foralln > 1. The obtained inequality is exactly the definition of O(:),
which requires T(n) < cn®.

So, T(n) € 0(n?), wherec =p +q + s,ng = 1,and g(n) = n?.

25



About Notation

Saying:
f(n) € 0(g(n))

ls the same as the following expressions:
. f() = 0(g())
. f(m)iso(gn))

- f(n)isoforder g(n)

26



But Wait...

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € 0(n3).
Proof:

T(n) =pn*+qn+s<pn®+qn®+sn’>=(p+q+s)n’

foralln > 1. The obtained inequality is exactly the definition of O(:),
which requires T(n) < cn?.

So, T(n) € 0(n®), wherec =p +q + s,ng = 1,and g(n) = n3.

27



So, Which One Is It?

Both! It's just that n? is a tighter upper-bound for T'(n).
letp =qg=s=1:
Tn)=n’+n+1

So, T(n) < 3n? < 3n3.

28
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From now on, when we ask for a
0(g(n)) expression, we mean the
tightest possible.
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Example: Bubble Sort

algorithm BubbleSort(A:array)
let n be the length of A
repeat <« true

Upper bound? Consider the content of an input
array that forces the algorithm run the most
operations.

while repeat do
repeat « false
for i from @ to n-2 do
if A[i] > A[i+1] then
swap(A, i, i+1)
repeat <« true
end if
end for
end while

Any idea?

Worst-case: The event of an input array sorted in
descending order.

return A
end algorithm

31



Example: Bubble Sort

algorithm BubbleSort(A:array)
let n be the length of A
repeat <« true

while repeat do
repeat « false
for i from @ to n-2 do
if A[i] > A[i+1] then
swap(A, i, i+1)
repeat <« true
end if
end for
end while

return A
end algorithm

Let c; be the costs associated to the statements
outside of the while loop, and ¢, be the costs
associated to the statements from and within the
while loop.

n—-1n-2

T(n) =C1+ZZCZ =c +cnn—1)
j=0 i=0
= ¢, + cn? —cyn

Claim: T(n) € 0(n?)
Proof: Assume ¢y, ¢, € ZF, ¢, < 5.

¢, + c;n? — cyn < ¢n?
Which holds with ¢ = ¢,, ng = 1, and g(n) = n2.

32



Unfortunately, peaple have occasionally
been using the o -notation for lower
bounds, for example when they reject a
particular sorting method "because its
running time is o (n?).

- Donald Knuth, 1976

SIGACT News 18 Apr.-June 1976

BIG OMICRON AND BIG OMEGA AND BIG THETA

Donald E. Knuth
Camputer Science Department
Stanford University
Stanford, California 94305

Most of us have gotten accustomed to the idea of using the notation
0(£(n)) to stand for any function whose magnitude ie upper-bounded by a
constant times f£(n) , for all large n . Sometimes we also need a
corresponding notation for lower-bounded functions, i.e., those functions
which are at least as large as a constant times f(n) for all large n .
Unfortunately, people have occasionally been using the O-notation for
lower bounds, for example when they reject a particular sorting method
"because its ruaning time i¢ O(n2) ." I have seen instances of this in
print quite often, and finally it has prompted me to sit down and write
a Letter to the Editor about the situation.

The classical literature does have a notation for functions that are
bounded below, namely ((f(n)) . The most prominent appearance of this
notation is in Titchmarsh's magnum opus on Riemann's zeta function [8],
where he defines (f(n)) on p. 152 and devotes his entire Chapter 8 to
" -theorems". See also Karl Prachar's Primzahlverteilung (7], p. 245.

The (O notation has not become very common, although I have noticed
its use in a few places, most recently in some Russian publications I
consulted about the theory of equidistributed sequences. Once I had
suggested to someone in a letter that he use (3 -notation "since it had
been used by number theorists for years"; but later, when challenged to
show explicit references, I spent a surprisingly fruitless hour searching
in the library without being able to turn up a single reference. 1 have
recently asked several prominent mathematicians if they knew vhat Q(n%)
meant, and more than half of them had never seen the notation before.

Before writing this letter, I decided to secarch more carefully, and
to study the history of O-notation and o-notation as well. Cajori's two-
volume work on history of mathematical notations does not mention any of

these. Wnile looking for definitions of ( I came across dozens of books

from the early part of this century which defined 0 and o but not 0 .

https://dl.acm.org/doi/pdf/10.1145/1008328.1008329
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Big-0Q

Asymptotic lower bounds




Big- Notation

Useful to classify algorithms according to a lower bound.

Definition: f(n) € Q(g(n))if3c > 0,3ny, > 0 suchthat0 < cg(n) <
f(n),vn = n,.

Plain English: If f(n) € Q(g(n)), then f(n) doesn't grow any slower
than g(n).

35



Example

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € Q(n?).
Proof:

pn? <pn?+qn+s =T(n)

foralln > 1. The obtained inequality is exactly the definition of Q.(:),
which requires pn? < T(n).

So, T(n) € Q(n?), where c = p.

36



But Wait...

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € Q(n).
Proof:

pn < pn? +qn+s =T(n)

foralln > 1. The obtained inequality is exactly the definition of Q.(:),
which requirespn < T'(n).

So, T(n) € Q(n), where c = p.

37



Even Lower!

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € Q(1).
Proof:

1<pn?+qn+s=T(n)

foralln > 1. The obtained inequality is exactly the definition of Q.(:),
which requires 1 < T(n).

So, T(n) € Q(1), wherec = 1.

38



So, Which One Is it?

All three! It's just that n? is a tighter lower-bound for T (n).
letp =qg=s=1:
Tn)=n?+n+1

So,1<n<n?<T(n).

39



T(n)=n2+r;+1
g(n)=n
h(n)=n

i(n) =1
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Example: Bubble Sort

algorithm BubbleSort(A:array)
let n be the length of A
repeat <« true
while repeat do Lower bound? Consider the content of an input
repeat « false array that makes the algorithm to run the least
for i from @ to n-2 do operations,
if A[i] > A[i+1] then
swap(A, i, i+l) Any idea?
repeat <« true
end if Best-case: The event of an input array already
end for sorted.
end while
return A
end algorithm

41



Example: Bubble Sort

algorithm BubbleSort(A:array)
let n be the length of A
repeat <« true

while repeat do
repeat « false
for i from @ to n-2 do
if A[i] > A[i+1] then
swap(A, i, i+1)
repeat <« true
end if
end for
end while

return A
end algorithm

Let c; be the costs associated to the statements
outside of the while loop, and ¢, be the costs
associated to the statements from and within the
while loop.

n—2

T(n)=cl+2c2=cl+czn—cz
i=0

Claim: T(n) € Q(n)
Proof: Assume ¢y, ¢, € ZF,¢; < 5.

Cln S Cl +C2n_ C2

The inequality holds withc = ¢;, ny = 1, and
gn) =n.

42



Big-6

Asymptotic tight bounds




Big-© Notation

We use it to classify algorithms according to a tight bound.

Definition: f(n) € @(g(n)) if 3c; > 0,3c, > 0,3any > 0suchthat 0 <
cig(n) < f(n) < c,g(n),vn = n,.

Plain English: If f(n) € ©(g(n)), then f(n) doesn't grow any faster nor
slower than g(n).

bty



Example

Consider T(n) = pn® + qn + s, wherep,q,s € R™.

Claim: T(n) € ©(n?).
Proof:

pn? <pn*+qn+s < (p+q+ s)n?

foralln > 1. The obtained inequality is exactly the definition of ©(-),
which requirespn? < T(n) < (p + q + s)n?.

So, T(n) € ©(n?), wherec; =p,c, =p +q + s,and g(n) = n?.

45



Limits

hmf()

7 reveals information about the asymptotic relationship between f and g:
n—>00

lim f()¢000=>fe®(g)

n-e g(n)

lim f()¢°°=>f€0(g)

n-co g(n)

lim f()iO = f € Q(g)

n-e g(n)

L'Hopital's rule comes in handy: If lim f(n) = oo andlog,,_,. g(n) = oo, thenlog,,_, E ;
n—>00

http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf
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Asymptotic Growth Properties

If f(n) € O(g(n)) and f(n) € Q(g(n)), then f(n) € G)(g(n)).

Transitivity:

- Iff(n) € O(Q(n)) and g(n) € O(h(n)), then f(n) € O(h(n)).
- Iff(n) € Q(g(n)) and g(n) € Q(h(n)), then f(n) € Q(h(n)).
- If f(n) € 8(g(n))and g(n) € @(h(n)), then f(n) € @(h(n)).

Sum of functions:

- Iff(n) € O(h(n)) and g(n) € O(h(n)), then f(n) + g(n) € O(h(n)).

. Let k be a fixed constant, and let fi, f5, ..., fi. be functions such that f;(n) € 0(h(n)) for
all1 < i < k.Then fi(n) + f,(n) + - + fie(n) € 0(h()).

- If f(n) € G)(g(n)), then f(n) + g(n) € G)(g(n)).

47



/©\@ Test yo' self @g

[ 3n2log(n?) + 4n € Q(log(n)) @] [ 3n2log(n) + 4n € 0(n?) ®)

[ 4log?(n) + n+ 2" € O(n) @] [ 15n3% € Q(1) ©

[ 6n2log(2™) + 4n3 € 0(n? log(n))@] [ 5n% +5n+ 7 € 0(n?) @]



Big-0 is not a synonym of worst case.
Big-Q is not a synonym of best case.
Big-@ is net a synonym of average case.
We use asymptotic notation to represent
the boundaries of the orders of growth

for the runtime expressions in terms of
the input size.
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f\@ Best/Worst Case Example

i« 2
while i < n * n do
num < Random(100)
if num > 50 then
1«1 *3
else
i«<1i+5

end if

end while

What does it mean to have a
best/worst case?

Lower bound: Q(log(n)) if the
random number is always greater
than 50.

Upper bound: O (n?) if the
random number is always less
than or equal than 50.

50



Best/Worst Case Example

Let A be an array storing n integers
for i from @ to < n - 2 do
jei+ 1

while j < n and A[i] < A[]j] do
jei+1
end while

if j < n then
temp « A[i]
A[i] « A[]]
A[J] « temp
end if

end for

What does it mean to have a
best/worst case?

Lower bound: Q(n) when the
while loop doesn't execute
because Ali]is never less than

AljL.

Upper bound: O (n?) when the
while loop always runs all the way
fromi + 1ton-1.

b1



STAHP!

Do you have any questions?

CREDITS: This presentation template was created by Slidesgo, including
icons by Flaticon, infographics & images by Freepik and illustrations by
Stories
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