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Computational Tractability
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Let’s dare to define algorithm 
efficiency
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What Do We Know So Far?

We can run experimental analyses based 
on observed data.

We can define runtime expressions that 
count the number of steps run by an 
algorithm in terms of the input size or 
values.

Runtime expressions may have different 
terms and coefficients.
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Tractability
We want to find efficient solutions for computational problems.

A tractable problem is “a problem that can be solved using a reasonable 
amount of resources (i.e., time and space).”

Idea
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Algorithm Efficiency?

Proposed def. (1): “An algorithm is 
efficient if, when implemented, it runs 
quickly on real input instances.”

Issues:
• Where do we run such an algorithm?
• How well? Does it run quickly for 

multiple input sizes?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 7



Algorithm Efficiency?

Proposed def. (2): “An algorithm is 
efficient if it achieves qualitative better 
worst-case performance, at an analytical 
level, than brute-force search.”

Issues:
• Worst-case performance seems 

draconian. How about average-case?
• Qualitative better performance?

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 8



Polynomial Time

Suppose an algorithm has the following property:

There are constants 𝑎 > 0 and 𝑏 > 0 so that on every input instance of size 𝑛, its 
running time is bounded by 𝑎𝑛𝑏 primitive computational steps.

Let’s consider an input size increase from 𝑛 to 2𝑛. So, the runtime increases:

𝑎 2𝑛 𝑏 = 𝑎2𝑏𝑛𝑏

Since 𝑏 is constant, so is 2𝑏 (slow-down factor).

Conclusion: Lower degree polynomials exhibit better scaling behavior than higher 
degree polynomials.

Explanation from: Algorithm Design, by Kleinberg and Tardos. 9



Operation Example Nanoseconds

Integer add a + b 2.1

Integer multiply a * b 2.4

Integer divide a / b 5.4

Floating-point add a + b 4.6

Floating-point multiply a * b 4.2

Floating-point divide a / b 13.5

Sine Math.sin(theta) 91.3

Arctangent Math.atan2(y,x) 129.0

Running OS X on Macbook Pro 2.2Ghz with 2GB Ram

Operation Costs

10



Algorithm Efficiency?

Proposed def. (3): “An algorithm is 
efficient if it has a polynomial running 
time.”

Issues:
• Too prescriptive!
• We know “better” running times than 

polynomial time.

Algorithm efficiency definition from: Algorithm Design, by Kleinberg and Tardos. 11



𝑛 𝑛 log2(𝑛) 𝑛2 𝑛3 1.5𝑛 2𝑛 𝑛!

𝑛 = 10 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 4 sec

𝑛 = 30 < 1 sec < 1 sec < 1 sec < 1 sec < 1 sec 18min 1025 years

𝑛 = 50 < 1 sec < 1 sec < 1 sec < 1 sec 11min 36 years Very long

𝑛 = 100 < 1 sec < 1 sec < 1 sec 1 sec 12,892 years 1017 years Very long

𝑛 = 1,000 < 1 sec < 1 sec 1 sec 18min Very long Very long Very long

𝑛 = 10,000 < 1 sec < 1 sec 2min 12 days Very long Very long Very long

𝑛 = 100,000 < 1 sec 2 sec 3 hours 32 years Very long Very long Very long

𝑛 = 1,000,000 1 sec 20 sec 12 days 31,710 years Very long Very long Very long

“The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million 
high-level instructions per second. In cases where the running time exceeds 1025 years, we simply record the algorithm 
as taking a very long time.”

Table from: Algorithm Design, by Kleinberg and Tardos. 12
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Grow Rate Name Example Description

1 Constant Assignment Statement

log(𝑛) Logarithmic Binary Search Non-linear 
increments

𝑛 Linear Linear Search Loop

𝑛 log(𝑛) Linearithmic Merge Sort Divide and 
Conquer

𝑛2 Quadratic Check all pairs Some double loops

𝑛3 Cubic Check all triples Some triple loops

2𝑛 Exponential Check all subsets Exhaustive search
14



What can we say about 
an algorithm as the 

input size increases?
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Asymptotic
“Approaching a value or a curve (i.e., a runtime expression) arbitrarily 

closely”

Idea
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Number of Operations?

Let’s focus on the for loops code for now:

3 variable declarations
8 integer additions
4 compares

Anything else? Are those numbers 
accurate?

How many times do those operations 
execute in terms of 𝑛?

algorithm ThreeSum(A:array) 

let n be the length of A
count ← 0

for i from 0 to n-1 do 
for j from i + 1 to n-1 do 

for k from j + 1 to n-1 do 
if A[i] + A[j] + A[k] = 0 

count ← count + 1
end if

end for
end for

end for

return count
end algorithm
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Example: OneSum code snippet

Running this code for some positive 
integer value n will result in:

• Variable declarations: 2
• Assignment statements: 2
• < compares: 𝑛 + 1
• == compares: 𝑛
• Array accesses: 𝑛
• Variable increments: 𝑛 to 2𝑛

int count = 0;

for (int i = 0; i < n; i++) 
{

if (A[i] == 0) 
{

count++;
}

}

18



Example: TwoSum code snippet

Running this code for some positive integer 
value n will result in:

• Variable declarations: 𝑛 + 2
• Assignment statements: 𝑛 + 2

• < compares: 𝑛 + 1 +
1

2
𝑛(𝑛 + 1)

• == compares: 1
2
𝑛(𝑛 − 1)

• Array accesses: 𝑛(𝑛 − 1)

• Variable increments: 𝑛 + 1

2
𝑛(𝑛 − 1) to 𝑛 +

𝑛(𝑛 − 1)

int count = 0;

for (int i = 0; i < n; i++) 
{

for (int j = i + 1; j < n; j++) 
{

if (A[i] + A[j] == 0) 
{

count += 1;
}

}
}

19



So, We Have a T(n)…

● Runtime expressions may have more 
than one term.

● There are more “dominant” terms 
than others.

● Some terms appear “frequently”.

● Idea: Let’s consider how runtime 
expressions grow as the input size 
increases.

20



Big-𝑂
02

Asymptotic upper bounds
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Big-𝑂 Notation

Useful to classify algorithms according to an upper bound.

Definition: 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 if ∃𝑐 > 0, ∃𝑛0 > 0 such that 0 ≤ 𝑓 𝑛 ≤

𝑐𝑔 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any faster than 
𝑔 𝑛 .
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Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇(𝑛) ∈ 𝑂(𝑛2).

Where do we even start? Check which term from 𝑇(𝑛) grows the fastest.

23
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Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛2 .
Proof:

𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝𝑛2 + 𝑞𝑛2 + 𝑠𝑛2 = 𝑝 + 𝑞 + 𝑠 𝑛2

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of 𝑂 ∙ , 
which requires 𝑇 𝑛 ≤ 𝑐𝑛2.

So, 𝑇 𝑛 ∈ 𝑂 𝑛2 , where 𝑐 = 𝑝 + 𝑞 + 𝑠, 𝑛0 = 1, and 𝑔 𝑛 = 𝑛2.
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About Notation

Saying:
𝑓 𝑛 ∈ 𝑂 𝑔 𝑛

Is the same as the following expressions:

• 𝑓 𝑛 = 𝑂 𝑔 𝑛

• 𝑓 𝑛 is 𝑂 𝑔 𝑛

• 𝑓 𝑛 is of order 𝑔 𝑛

26



But Wait… 

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛3 .
Proof:

𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝𝑛3 + 𝑞𝑛3 + 𝑠𝑛3 = 𝑝 + 𝑞 + 𝑠 𝑛3

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of 𝑂 ∙ , 
which requires 𝑇 𝑛 ≤ 𝑐𝑛3.

So, 𝑇 𝑛 ∈ 𝑂 𝑛3 , where 𝑐 = 𝑝 + 𝑞 + 𝑠, 𝑛0 = 1, and 𝑔 𝑛 = 𝑛3.

27



So, Which One Is It?

Both! It’s just that 𝑛2 is a tighter upper-bound for 𝑇 𝑛 .

Let 𝑝 = 𝑞 = 𝑠 = 1:

𝑇 𝑛 = 𝑛2 + 𝑛 + 1

So, 𝑇 𝑛 ≤ 3𝑛2 ≤ 3𝑛3.

28
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From now on, when we ask for a 
𝑂 𝑔 𝑛 expression, we mean the 

tightest possible.

30



Example: Bubble Sort

Upper bound? Consider the content of an input 
array that forces the algorithm run the most 
operations.

Any idea?

Worst-case: The event of an input array sorted in 
descending order.

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm

31



Example: Bubble Sort

Let 𝑐1 be the costs associated to the statements 
outside of the while loop, and 𝑐2 be the costs 
associated to the statements from and within the 
while loop.

𝑇 𝑛 = 𝑐1 +෍

𝑗=0

𝑛−1

෍

𝑖=0

𝑛−2

𝑐2 = 𝑐1 + 𝑐2𝑛 𝑛 − 1

= 𝑐1 + 𝑐2𝑛
2 − 𝑐2𝑛

Claim: 𝑇 𝑛 ∈ 𝑂 𝑛2

Proof: Assume 𝑐1, 𝑐2 ∈ ℤ+, 𝑐1 ≤ 𝑐2.

𝑐1 + 𝑐2𝑛
2 − 𝑐2𝑛 ≤ 𝑐2𝑛

2

Which holds with 𝑐 = 𝑐2, 𝑛0 ≥ 1, and 𝑔 𝑛 = 𝑛2.

32

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm



Unfortunately, people have occasionally 
been using the 𝑂-notation for lower 
bounds, for example when they reject a 
particular sorting method "because its 
running time is 𝑂 𝑛2 .“

- Donald Knuth, 1976

https://dl.acm.org/doi/pdf/10.1145/1008328.1008329
33
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Big-Ω
03

Asymptotic lower bounds
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Big-Ω Notation

Useful to classify algorithms according to a lower bound.

Definition: 𝑓 𝑛 ∈ Ω 𝑔 𝑛 if ∃𝑐 > 0, ∃𝑛0 > 0 such that 0 ≤ 𝑐𝑔 𝑛 ≤

𝑓 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ Ω 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any slower
than 𝑔 𝑛 .
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Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 𝑛2 .
Proof:

𝑝𝑛2 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ , 
which requires 𝑝𝑛2 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 𝑛2 , where 𝑐 = 𝑝.

36



But Wait…

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 𝑛 .
Proof:

𝑝𝑛 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ , 
which requires 𝑝𝑛 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 𝑛 , where 𝑐 = 𝑝.

37



Even Lower!

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Ω 1 .
Proof:

1 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 = 𝑇 𝑛

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Ω ∙ , 
which requires 1 ≤ 𝑇 𝑛 .

So, 𝑇 𝑛 ∈ Ω 1 , where 𝑐 = 1.

38



So, Which One Is it?

All three! It’s just that 𝑛2 is a tighter lower-bound for 𝑇 𝑛 .

Let 𝑝 = 𝑞 = 𝑠 = 1:

𝑇 𝑛 = 𝑛2 + 𝑛 + 1

So, 1 ≤ 𝑛 ≤ 𝑛2 ≤ 𝑇 𝑛 .

39
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Example: Bubble Sort

Lower bound? Consider the content of an input 
array that makes the algorithm to run the least 
operations.

Any idea?

Best-case: The event of an input array already 
sorted.

41

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm



Example: Bubble Sort

Let 𝑐1 be the costs associated to the statements 
outside of the while loop, and 𝑐2 be the costs 
associated to the statements from and within the 
while loop.

𝑇 𝑛 = 𝑐1 +෍

𝑖=0

𝑛−2

𝑐2 = 𝑐1 + 𝑐2𝑛 − 𝑐2

Claim: 𝑇 𝑛 ∈ Ω 𝑛
Proof: Assume 𝑐1, 𝑐2 ∈ ℤ+, 𝑐1 ≤ 𝑐2.

𝑐1𝑛 ≤ 𝑐1 + 𝑐2𝑛 − 𝑐2

The inequality holds with 𝑐 = 𝑐1, 𝑛0 ≥ 1, and 
𝑔 𝑛 = 𝑛.

42

algorithm BubbleSort(A:array)
let n be the length of A
repeat ← true

while repeat do
repeat ← false
for i from 0 to n-2 do

if A[i] > A[i+1] then
swap(A, i, i+1)
repeat ← true

end if
end for

end while

return A
end algorithm



Big-Θ
04

Asymptotic tight bounds
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Big-Θ Notation

We use it to classify algorithms according to a tight bound.

Definition: 𝑓 𝑛 ∈ Θ 𝑔 𝑛 if ∃𝑐1 > 0, ∃𝑐2 > 0, ∃𝑛0 > 0 such that 0 ≤
𝑐1𝑔 𝑛 ≤ 𝑓 𝑛 ≤ 𝑐2𝑔 𝑛 , ∀𝑛 ≥ 𝑛0.

Plain English: If 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , then 𝑓 𝑛 doesn’t grow any faster nor 
slower than 𝑔 𝑛 .

44



Example

Consider 𝑇 𝑛 = 𝑝𝑛2 + 𝑞𝑛 + 𝑠, where 𝑝, 𝑞, 𝑠 ∈ ℝ+.

Claim: 𝑇 𝑛 ∈ Θ 𝑛2 .
Proof:

𝑝𝑛2 ≤ 𝑝𝑛2 + 𝑞𝑛 + 𝑠 ≤ 𝑝 + 𝑞 + 𝑠 𝑛2

for all 𝑛 ≥ 1. The obtained inequality is exactly the definition of Θ ∙ , 
which requires 𝑝𝑛2 ≤ 𝑇 𝑛 ≤ 𝑝 + 𝑞 + 𝑠 𝑛2.

So, 𝑇 𝑛 ∈ Θ 𝑛2 , where 𝑐1 = 𝑝, 𝑐2 = 𝑝 + 𝑞 + 𝑠, and 𝑔 𝑛 = 𝑛2.
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Limits

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
reveals information about the asymptotic relationship between 𝑓 and 𝑔:

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ 0,∞ ⇒ 𝑓 ∈ Θ 𝑔

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ ∞ ⇒ 𝑓 ∈ 𝑂 𝑔

lim
𝑛→∞

𝑓 𝑛

𝑔 𝑛
≠ 0 ⇒ 𝑓 ∈ Ω 𝑔

L'Hôpital’s rule comes in handy: If lim
𝑛→∞

𝑓 𝑛 = ∞ and log𝑛→∞ 𝑔 𝑛 = ∞, then log𝑛→∞
𝑓 𝑛

𝑔 𝑛
= log𝑛→∞

𝑓′ 𝑛

𝑔′ 𝑛
.

46http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf

http://web.mit.edu/broder/Public/asymptotics-cheatsheet.pdf


Asymptotic Growth Properties

If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑓 𝑛 ∈ Ω 𝑔 𝑛 , then 𝑓 𝑛 ∈ Θ 𝑔 𝑛 .

Transitivity:
• If 𝑓 𝑛 ∈ 𝑂 𝑔 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 , then 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Ω 𝑔 𝑛 and 𝑔 𝑛 ∈ Ω ℎ 𝑛 , then 𝑓 𝑛 ∈ Ω ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Θ 𝑔(𝑛) and 𝑔 𝑛 ∈ Θ ℎ 𝑛 , then 𝑓 𝑛 ∈ Θ ℎ 𝑛 .

Sum of functions:
• If 𝑓 𝑛 ∈ 𝑂 ℎ 𝑛 and 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 , then 𝑓 𝑛 + 𝑔 𝑛 ∈ 𝑂 ℎ 𝑛 .
• Let 𝑘 be a fixed constant, and let 𝑓1, 𝑓2, … , 𝑓𝑘 be functions such that 𝑓𝑖 𝑛 ∈ 𝑂 ℎ 𝑛 for 

all 1 ≤ 𝑖 ≤ 𝑘. Then 𝑓1 𝑛 + 𝑓2 𝑛 + ⋯+ 𝑓𝑘 𝑛 ∈ 𝑂 ℎ 𝑛 .
• If 𝑓 𝑛 ∈ Θ 𝑔 𝑛 , then 𝑓 𝑛 + 𝑔 𝑛 ∈ Θ 𝑔 𝑛 .

47



Test yo’ self

3𝑛2 log 𝑛2 + 4𝑛 ∈ Ω log 𝑛 3𝑛2 log 𝑛 + 4𝑛 ∈ 𝑂 𝑛2

6𝑛2 log 2𝑛 + 4𝑛3 ∈ 𝑂 𝑛2 log 𝑛 5𝑛2 + 5𝑛 + 7 ∈ Θ 𝑛2

4 log2 𝑛 + 𝑛 + 2𝑛 ∈ Θ 𝑛 15𝑛3 ∈ Ω 1

48



Big-𝑂 is not a synonym of worst case.

Big-Ω is not a synonym of best case.

Big-Θ is not a synonym of average case.

We use asymptotic notation to represent 
the boundaries of the orders of growth 
for the runtime expressions in terms of 
the input size.

49



What does it mean to have a 
best/worst case?

Lower bound: Ω log 𝑛 if the 
random number is always greater 
than 50.

Upper bound:𝑂 𝑛2 if the 
random number is always less 
than or equal than 50.

Best/Worst Case Example

50

i ← 2

while i < n * n do

num ← Random(100)

if num > 50 then
i ← i * 3

else
i ← i + 5

end if

end while



What does it mean to have a 
best/worst case?

Lower bound: Ω 𝑛 when the 
while loop doesn’t execute 
because A[i] is never less than 
A[j].

Upper bound:𝑂 𝑛2 when the 
while loop always runs all the way 
from 𝑖 + 1 to 𝑛– 1.

Best/Worst Case Example

51

Let A be an array storing n integers

for i from 0 to < n – 2 do

j ← i + 1

while j < n and A[i] < A[j] do
j ← j + 1

end while

if j < n then
temp ← A[i]
A[i] ← A[j]
A[j] ← temp

end if

end for
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